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DAMD-17-02-1-0634 Progress Report
Introduction

Conventional analysis of breast cancer specimens has largely been
based on the microscopic appearance of the tumor. Surprisingly,
the microscopic and molecular analyses of tissue have ignored
color, a potentially tremendous source of information. Preliminary
data suggests that the information content of the spectra of tissue
is as high, or higher than that obtained from conventional spatial
morphology. Recently, the combination of new optical technologies
(spectral imaging) and vastly improved computer power has evolved
such that quantitative spectral analysis can be done on each pixel
of a complex histologic image. The purpose of this project was to
test the hypothesis that spectral analysis will provide diagnostic
and prognostic information beyond that attainable from conventional
morphology using the same starting material, a stained histology or
cytology slide. To test that hypothesis we proposed a three-fold
approach, First, we will determine the ability of spectral analysis
to distinguish benign from malignant breast tumors. Secondly, we
will determine if spectral information can segment patient cohorts
based on outcome (in a manner analogous to the way conventional
morphology uses histologic and nuclear grade). Finally, we will
assess the whether the spectral signatures can be used in a broader
fashion to aid diagnosis in cytologic specimens.

Body

The original approved statement of work was as follows:

Tasks/Aims:

Aim 1: To use spectral analysis to classify benign from malignant
in breast tissue specimens

Aim 2: To use spectral analysis to attempt to stratify breast
cancers with respect to outcome in a manner comparable to
histologic/nuclear grade, clinical stage, or prognostic marker
results.

Aim 3. To use spectral signatures to classify cytologic breast
fine needle aspiration specimens.

Year 1:

1. Construct benign/malignant tissue array from existing tissue
collections using approximately 250 cases of breast cancer and
associated normal tissue. Assemble associated databases.

2. Hire fellow and train on spectral analysis software.

3. Begin pilot analysis of breast tissue, defining
benign/malignant spectral signatures.

4. Select and/or prepare cytologic FNA specimens for Aim 3 cohort.
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Year 2:

1. Collect and analyze data on benign/malignant array and define
spectral signatures.

2. Completion of preliminary work and publication of first
description of methods for spectral-based pathologic analysis.

3. Begin analysis of the classification potential of spectral
signatures by collection of spectral data from arrays where the
stage, grade, and outcome information is used in selection of
machine training regions. This will probably include integration
and further training on new software (as it is developed)

4, Optimization/standardization of staining protocols for cytology
specimens.

5. Collection of spectral data and data analysis of control
cytologic specimens.

Year 3:

1. Completion and publication of first efforts on spectral
classification.

2. Continuation of analysis of the classifying capacity of
spectral signatures by optimization of the information used in
selection of machine training regions. This may include
integration of new software as it is developed.

3. Application of spectral signature to cytologic specimens to
attempt to stratify on the basis of benign vs malignant, but then
also to classify “atypical” cases based on their spectral profile.
This may also require further training on cytology-specific
modifications of the software.

To date we have completed nearly all of the tasks targeted for
years one and two and made some progress on other tasks.
Specifically, benign and malignant breast cancer tissue
microarrays have been constructed and the relevant clinical
follow-up information has been collected. Raj Jaganath learned
to use the Varispec™ device and software and collected image
stacks on a 20 benign and malignant spots. He was trained and
assisted in this effort by Dr. Richard Levenson, a key consultant
to the project. The images were reviewed and annotated by Tolgay
Ocal, a collaborating expert breast pathologist, then sent to
Neal Harvey at Los Alamos National Labs for Genie-based software
analysis. GENIE is Unix-based software produced at Los Alamos,
based on the genetic algorithm concept using both spatial and
spectral data as the computational basis. The analysis software
is not yet usable by general pathologist. However, Dr. Harvey
used the annotations of Dr. Ocal to define normal from malignant
and then constructed training sets based on the spectral profiles
of a series of spots. Then a second series of spots was selected
as a test set. The result was that over 87% of all cancerous
nuclei pixels were correctly identified while less than 7% of

5
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normal tissue was incorrectly labeled as cancer. For images that
contained only normal tissue, on average, GENIE incorrectly
labeled less than 1% of pixels as cancer. Thus, although this is
preliminary data, it is very promising. It has been presented at
the SPIE Biomedical Imaging Conference of 2003 and published in
the meeting proceedings. The publication is included in the
appendix. In follow up to this study, Dr. Angeletti has
collected images from a much larger series of benign and
malignant spots from these arrays to extend this study. This
study has taken longer that anticipated and is still in progress.

Toward to goals of aim 3, Raj has prepared a series of 80 breast
FNA specimens for analysis by prepping and staining the specimens
in identical manner. Images have been collected from this series
of FNAs and analysis of the images is underway.

As of July 1, 2003, Cesar Angeletti was joined this effort on a
full time basis replacing Raj Jaganath who graduated. Shortly
after he began in the lab, Cesar visited our collaborator, Neal
Harvey at Los Alamos National Labs and learned to use the GENIE
program described above. He then began analysis of a series of
experiments on tissue and cytology specimens at Yale. Although
he focused on breast cancer, for the purposes of testing of the
GENIE system on cytology specimens, he has begun a series of
studies on urine specimens. He chose these specimens since they
are much more plentiful than breast FNAs and provided an easy-to-
use test platform in preparation for the more complex analysis
required for breast FNAs.

Using these specimens, he has directly addressed the staining
issues raised in SOW point 4 for year 2. We have evaluated the
effect of staining on spectral properties, both across years and
batches at our own institution as well as between institutions,
in a collaboration forged with Andrew Fisher at the University of
Massachusetts in Worcester. We selected and process of hundreds
of cells from three data sets: 1) Yale specimens from 1996-1997,

2) Yale specimens from 1998-1999 and 3) UMass specimens from
2003-2004. Using a GENIE derived chromosome to define malignant
cells, based on a fraction of the ’96-'97 set, we found a
sensitivities and specificities in the 85-95% range for correct
assignment of malignant cells, independent of year of acquisition
or institution. (see table 1) This result suggests that we should
be able to use to standard Pap stain for breast cancer specimens
and that the information content of those specimens should be
sufficient for similar spectral cytologic analysis.
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Table 1

Data Set N Benign N Malignant | Sensitivity | Specificity
Yale 96-97 308 122 91% 95%

Yale 98-99 190 178 87% 96%

UMASS 03-04 |121 40 85% 97%

The next step was the analysis of “atypical” specimens.

Both

Breast and urinary cytology suffer from the fact that in 25% or
more of the specimens, the morphologic information is
insufficient for a definitive diagnosis. The result is that the
pathologist calls these cases “atypical” which is not very
helpful in the next steps of patient management. One of the
goals of this technology is to eliminate the “atypical” diagnosis
by the addition of spectral information. Again, this was piloted
in urine specimens due to the difficulty in obtaining breast
FNAs. Here we selected a series of cases where the
cytopathologist made the diagnosis of atypical and the urologist
then decided to biopsy the patient. We used the histological
biopsy result as the criterion standard and constructed a
training set of atypical urine specimens adjudicated by
cystoscopic biopsy. We found we were able to generate a GENIE
chromosome that could predict the biopsy result with 70-80%
accuracy. This data has now been synthesized in a manuscript that
has been submitted to Nature Methods (attached as an appendix).

Key Research Accomplishments:

1. Completion of Initial Breast Tissue Microarrays for Malignant
vs Normal and Outcome-based analysis

2. Completion of Spectral Image stack acquisition for Malignant vs
Normal series.

3. Completion of Analysis of Malignant vs Normal series and
construction of training and out-of-training set analyses

4. Collection of cases for Breast FNA studies

5. Completion of standardization and testing of cytology specimen
and staining parameters.

6. Completion of a series of urine specimens as a model for the
breast cancer studies

7. Adjudication of atypical cytology specimens by the combination
of spectral and spatial information using GENIE algorithms

7
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Reportable outcomes:

An abstract, which was subsequent published in the SPIE proceedings
describes the combination of spectral and spatial analysis showing
good classifying ability to distinguish normal breast tissue from

malignant tissue (see appendix).

A paper has been published in the journal Cancer Cytopathology
related to the spectral properties of cytology specimens using
urine specimens as a model system, a second manuscript is submitted
using similar material with the addition of the GENIE system for

analysis (see appendix).

Conclusions:

Preliminary results suggest there is sufficient information
attainable from the combination of spectral and spatial data, using
genetic algorithms, to classify malignancy in breast cancer. We
have also now tested the system on Papanicoulaou stained cytology
specimens. We have shown that the information obtained is from
this material is robust and independent of stain batch or even
institution. We are now facing the more difficult challenges of
distinguishing benign lesions from malignant lesions and
correlation of spectral/spatial features with tumor behavior.

References:
See original proposal and reference sections of appended

manuscripts.
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Investigation of Automated Feature Extraction Techniques for
Applications in Cancer Detection from Multispectral
Histopathology Images
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bCambridge Research and Instrumentation Inc., 35-B Cabot Road Woburn, MA 01801;
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ABSTRACT

Recent developments in imaging technology mean that it is now possible to obtain high-resolution histological image
data at multiple wavelengths. This allows pathologists to image specimens over a full spectrum, thereby revealing
(often subtle) distinctions between different types of tissue. With this type of data, the spectral content of the
specimens, combined with quantitative spatial feature characterization may make it possible not only to identify the
presence of an abnormality, but also to classify it accurately. However, such are the quantities and complexities of
these data, that without new automated techniques to assist in the data analysis, the information contained in the
data will remain inaccessible to those who need it. We investigate the application of a recently developed system
for the automated analysis of multi-/hyper-spectral satellite image data to the problem of cancer detection from
multispectral histopathology image data. The system provides a means for a human expert to provide training
data simply by highlighting regions in an image using a computer mouse. Application of these feature extraction
techniques to examples of both training and out-of-training-sample data demonstrate that these, as yet unoptimized,
techniques already show promise in the discrimination between benign and malignant cells from a variety of samples.

Keywords: multispectral, histopathology, classification, cancer, machine learning

1. INTRODUCTION

In the field of pathology, accuracy in tissue diagnosis is essential to ensure that patients receive the most appropriate,
most cost-effective and least toxic therapies. At present, the state of the art for the determination of a pathological
diagnosis relies on manual, morphology based analysis of tissue sections, a method largely unchanged since the nine-
teenth century. Relying largely upon visual pattern recognition of tissue samples, the entire process is subjective,
somewhat irreproducible and inefficient in extracting all the information contained in the specimen, especially as
related to prognosis and therapy guidance. Recent advances in optical technologies, coupled with improved computer
power, mean that it is now possible to extract information beyond the capabilities of the human visual system. We
can extend beyond the limitations of the human eye’s acuity and the visible spectrum and obtain high-resolution
histological image data at multiple wavelengths. These data have the potential for revealing (often subtle) distinc-
tions between different types of tissue that could be useful in determining objective, reproducible disease-classifying
information. The spectral content by itself contains a great deal of information, whose value increases greatly when
it is combined with the spatial information available. Unfortunately, such are the quantities and complexities of
these data, that without new automated techniques to assist in the data analysis, the useful information contained
in the data may remain largely inaccessible. Integration of the spectral and spatial information contained in these
images using sophisticated but robust statistical techniques should make it possible to obtain disease classifications
that are more accurate, objective and reproducible than is possible with existing manual methods.

Here we describe preliminary experiments in which we investigate the application of a recently developed system
for the automated analysis of multi- /hyper-spectral satellite and aerial image data to the problem of cancer detection
from multispectral histopathology image data. The system, known as GENIE, was originally developed for the
military and intelligence community, to provide a means to develop automated feature extraction tools for multi-
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and hyper-spectral aerial and satellite imagery. The reason for GENIE’s development is that while there exist highly-
skilled image analysts who are expert at identifying features of interest from complex image data sets, they are limited
in number and, being human, have limited capabilities: they have a limited spectral capability (3 channels) and rate
at which they can analyze imagery. So, in order to go beyond these limitations, there is a need to develop systems
in which the power of modern computers and machine-learning techniques can be brought to bear. Although human
analysts are extremely good at finding features of interest within imagery, they are not so good at describing exactly
how they are able to do this, and hence, hand-coding algorithms designed for specific tasks is a difficult and often long
and expensive process. Thus, we have developed a system whereby a human expert can teach a computer to create
algorithms to perform these functions, via a simple graphical user interface, in which a human provides training data
to the computer by simply highlighting examples of the features of interest on a computer screen.

One can make certain comparisons between the military and intelligence community and the medical (specfically,
pathology) community. They both have a great deal of complex, high-dimensional data (multi- and hyper-spectral
satellite and aerial imagery vs multi-spectral histopathology imagery) that they wish to analyze. They both wish
to find features of interest within complex backgrounds (e.g. military targets vs cancer cells) and they both have
human experts available who are highly skilled at identifying these features (image analysts vs pathologists), but
who have limitations with regard to the complexity and quantity of the data which they can analyze. Bearing these
similarities in mind, it is not unreasonable to investigate the application of a software system originally developed to
address remote-sensing problems to a set of problems in the medical arena.

2. SPECTRAL IMAGING

Spectral imaging microscopy represents a technological advance over visual or RGB-camera-based analyses, provid-
ing images at multiple wavelengths and generating precise optical spectra at every pixel. These rich data sets have
applications in surgical pathology, multicolor fluorescence and immunohistochemistry. There now exists a variety
of technologies for use in combination with microscopy, including tunable filters, Fourier-transform interferometry,
line-scanning prism or gratings-based devices, computed tomography, and others based on polarization effects. Math-
ematical approaches to these complex data sets may then be used to extract maximum possible information from
the resulting data.

In the experiments described here, a VariSpec(tm) liquid crystal tunable filter devices (CRI, Inc.)'* was used.
This device can transmit in a number of wavelength ranges (e.g., 400-720 nm or 850-1800 nm with bandwidths
typically in the 7 to 20-nm range, although bandwidths as narrow as 0.1 nm have been achieved).

3. AUTOMATED IMAGE ANALYSIS: OVERVIEW OF THE GENIE SYSTEM

The details of GENIE'’s algorithmic structure have been described previously in the literature,’” so, in the interests
of brevity, we provide only a brief overview of our system.

Our particular interest is the pixel-by-pixel classification of multi-spectral images, not only to locate and iden-
tify but also to delineate particular features of interest. For the experiments described here, we are interested in
distinguishing cancerous (malignant) cells against the background (which includes normal benign cells). Due to
the quantities and complexities of the multispectral data with which we are working, the hand-coding of suitable
feature-detection algorithms is impractical. We therefore use a supervised learning approach that can, using only a
few hand-classified training images, generate image processing pipelines that are capable of distinguishing features
of interest from the background. We remark that our approach here is to consider the two-class problem: although
many classification applications require the segmentation of an image into a larger number of distinct classes, for
our particular problem, our main interest is the simpler problem of identifying a single class (cancer) against a
background of “other” classes. GENIE does possess the capability for performing multiple-class classification,® but
here we did not make use of that functionality.

GENIE employs a classic evolutionary paradigm: a population is maintained of candidate solutions (chromo-
somes), each composed of interchangeable parts (genes), and each assessed and assigned a scalar fitness value,
based on how well it performs the desired task. After fitness determination, the evolutionary operators of selection,
crossover and mutation are applied to the population and the entire process of fitness evaluation, selection, crossover
and mutation is iterated until some stopping condition is satisfied.




3.1. Environment

The environment for each individual in the population consists of data planes, each of these planes corresponding to
a separate spectral channel in the original multi-spectral image, together with a weight plane and a feature plane.
The weight plane identifies those pixels to be used in training — these are all the pixels for which the analyst has
provided a class label. The actual delineation of separate feature/class pixels is given by the feature plane.

3.2. Chromosomes and Genes

Each individual chromosome in the population consists of a fixed-length string of genes. Each gene in GENIE
corresponds to a primitive image processing operation. Therefore the entire chromosome describes an algorithm
consisting of a sequence of primitive image processing operations.

Each gene used in GENIE takes one or more distinct image planes as input, and produces one or more image
planes as output. Input can be taken from any of the data planes in the training data image cube. Output is written
to any of a small number of scratch planes — temporary workspaces where an image plane can be stored. Genes can
also take input from scratch planes, but only if that scratch plane has been written to by another gene earlier in the
chromosome sequence.

Our “gene pool” is composed of a set of primitive image processing operators which we consider useful. These
include spectral, spatial, logical and thresholding operators.

3.3. Backends

Final classification requires that the algorithm produce a single (discrete) scalar output plane, which identifies, for
every pixel, the class to which it has been assigned. We have found it advantageous to adopt a hybrid approach
which applies a conventional supervised classifier to a (sub)set of scratch and data planes to produce the final output
plane.

To do this, we first select a subset of the scratch and data planes to be answer planes. The conventional supervised
classifier “backend” uses the answer planes as input and produces a final output classification plane; in principle, we
can use any supervised classification technique as the backend, but for the experiments reported here, we used the
Fisher linear discriminant® as the backend.

3.4. Fitness Evaluation

The fitness of a candidate solution is given by the degree of agreement between the final classification output plane
and the training data. It is based on a simple ratio of the total number of incorrectly classified training pixels over
all classes to the total number of training pixels over all classes. If we denote the detection rate (fraction of “true”
pixels classified correctly) as R4 and the false alarm rate (fraction of “false” pixels classified incorrectly) as Ry, then
the fitness F' of a candidate solution is given by

F = 500(Rq + (1 — Ry)). (1)

Thus, a fitness of 1000 indicates a perfect classification result. This fitness score gives equal weighting to type
I (true pixel incorrectly labelled as false) and type II (false pixel incorrectly labelled as true) errors. Note a fitness
score of 500 can be trivially achieved with a classifier that identifies all pixels as true (or all pixels as false).

4. EXPERIMENTS: CANCER DETECTION
4.1. Tasks

We set GENIE the task of detecting cancerous nuclei in multispectral breast tissue image data. Thus we have a
classification problem with two classes: (1) cancerous nuclei and (2) everything else. Therefore, GENIE was given
the task of searching for algorithms that would be able to label each pixel within an image as belonging to one or
other of these two classes. While our approach here was to consider the two-class problem, we are aware that other
applications might require the segmentation of an image into a larger number of distinct classes. In fact, GENIE is
capable of addressing multiple-class problems.® However, for this study, we only consider the simpler problem of
identifying a single class against a background of “other” classes.



4.2. Multispectral data

The construction of tissue microarrays (TMAs) has been previously described and recently reviewed.!®-!® Briefly,
formalin-fixed, paraffin-embedded tissue blocks containing breast cancer were retrieved from the archives of the Yale
University Department of Pathology. Areas of invasive carcinoma were identified on corresponding hematoxylin-
eosin stained slides and the tissue blocks were cored and transferred to a recipient “master” block using a Tissue
Microarrayer (Beecher Instruments, Silver Spring, MD). Each core is 0.6 mm wide, spaced 0.7-0.8 mm apart. After
cutting of the recipient block and transfer with an adhesive tape to coated slides for subsequent UV cross-linkage
(Instrumedics, Inc, Hackensack, NJ), the slides were dipped in a layer of paraffin in order to prevent oxidation (24).
Slides were stained with hematoxylin and eosin, were evaluated for quality of the section and then selected for spectral
imaging analysis. For these experiments, examples of both breast cancer and normal tissue were selected.

Images were collected at 10 nm intervals between 420 nm-700 nm using a CRI (Cambridge Research Instru-
ments'®) VariSpec filter, CRI PanKroma acquisition software, a light microscope, and a QImaging Retiga megapixel
digital monochrome camera. The process is semi-automated. The image on the CCD is brought into focus while
the tunable filter is tuned to 550 nm (a high-contrast part of the spectrum for H & E samples). An autoexpose
function then steps the filter through the spectral range, calculating exposure times wavelength-by-wavelength that
will cause the brightest pixels to nearly fill their dynamic range (250 counts for an 8-bit, 256-level sensor). Using
these exposure times, a stack of images is automatically collected, with the computer tuning the filter and acquiring
an image at every wavelength step, resulting in stacks of 29 images for each sample (tissue microarray dot). To
remove optical irregularities in the image train (dust on the CCD window for example) and also some variations in
intensity across the liquid crystal filter, the images are flat-fielded by dividing (and normalizing for intensity) each
plane of the sample image by the corresponding plane of a white stack obtained from a clear area on the same slide.
The image stack, consisting of a series of tif images sequentially numbered, is converted into a single ENVI-format
data file with separate header, and transferred to Los Alamos via ftp.

4.3. Training data

In order to provide training data, several images were selected, some containing a mixture of both cancerous and
normal tissue and some containing only normal, healthy tissue. Of these images, sub-regions were selected that
contained suitably representative samples of pixels from both classes: (1) cancerous nuclei and (2) “everything else”.
For the cancerous nuclei training samples, regions that had a high density of cancerous nuclei were selected. For
the “everything else” training samples, regions were selected that had combinations of the kinds of features that
are present in that somewhat-broad class. We were careful to select some regions of normal tissue that contained a
high density of normal, healthy nuclei, in order to provide some training data samples that could assist GENIE in
evolving an algorithm able to successfully disambiguate cancerous from healthy nuclei.

Fig. 1 shows examples of the original image data and the associated training data (labels) provided by the expert.
Fig. 1 (a) shows a true color image of one of the images obtained for breast tissue containing cancer. Fig. 1 (b)
shows the training data provided by the expert for the data shown in Fig. 1 (a). Pixels labelled as containing cancer
are colored green and pixels labelled as normal are colored red. The training data p(red and green) image has been
overlaid onto a gray-scale representation of the true-color image shown in Fig. 1 (a). The region enclosing only those
pixels in the image used for training is shown by the bounding box. Fig. 1 (c) shows a true color image of one of
the images obtained for breast tissue containing only normal tissue. Fig. 1 (d) shows the training data provided by
the expert for the data shown in Fig. 1 (c). As with Fig. 1 (b), pixels labelled as containing cancer are colored green
and pixels labelled as normal are colored red (note that there are no green pixels in this image). The training data
image has been overlaid onto a gray-scale representation of the true-color image shown in Fig. 1 (c), and the region
enclosing only those pixels in the image used for training is shown by the bounding box.

5. RESULTS

Fig. 2 shows the results of applying the classification algorithm found by GENIE during its training, to some data.
Fig. 2 shows the classification results of applying the algorithm to the data shown in Fig. 1 (a). The pixels labelled
by the algorithm as cancer are colored green and those labelled as normal are colored red. The resulting classification
(red and green) image has been overlaid onto a gray-scale image of the original data, just as for the training data
shown in Fig. 1 (b). Fig. 2 (b) shows a true-color image of a data set containing cancerous and normal tissue that
was not seen during training. Fig. 2 (c) shows a true-color image of a data set containing only normal tissue that



Figure 1. Breast: (a) True color image of one of the data sets obtained from breast tissue containing cancer; (b)
Training data provided from this image: Green = Feature (i.e. Cancer), Red = Not Feature (i.e. Non-Cancer); (c)
True color image of one of the data sets obtained from breast tissue containing only healthy (non-cancerous) tissue;
(d) Training data provided from this image: Notice there are no Green pixels, due to there being no cancer in the
image.

was not seen during training. Fig. 2 (d) shows the classification results of applying the algorithm to the data shown
in Fig. 1 (c). As before, the pixels labelled by the algorithm as cancer are colored green and those labelled as normal
are colored red, and the resulting classification image has been overlaid onto a gray-scale image of the original data.

Table 1 shows the performance of the algorithm found by GENIE during training, as relates to the training data
and the entire images, from which the training data was extracted. Column 1 shows the image name. Column 2
shows the number of pixels labelled as cancer that were provided in the training data for each image. Column 3
shows the number of pixels labelled as non-cancer (normal) that were provided in the training data for each image.
Column 4 shows the detection rate, DR, (percentage of pixels labelled as cancer in the training data that were
labelled correctly as cancer by the algorithm found by GENIE during training) for each image in the training data
set. Column 5 shows the false-alarm rate, FAR (percentage of pixels labelled as normal in the training data that
were incorrectly labelled as cancer by the algorithm found by GENIE during training) for each image in the training
data set. Column 6 shows the total number of pixels labelled as cancer by GENIE’s algorithm for the entire image
from which the training data was extracted.

Table 2 shows the performance of the algorithm found by GENIE during training, as relates to some testing data
- i.e. some image data which was not seen during training (out-of-training-sample data). For these images, in order
to be able to assess GENIE’s performance in a quantitative manner, an expert provided ground truth for regions in
these images, in a similar manner to that provided for the data used in training. Column 1 shows the image name.
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Figure 2. GENIE: Breast (a) Output of GENIE-derived classification algorithm found during training, applied
to raw multispectral data shown in Fig. 1 (a); (b) True color image of one of the data sets obtained from breast
tissue containing cancer, but not used during training; (c) True color image of one of the data sets obtained from
breast tissue containing only healthy (non-cancerous) tissue, but not used during training; (d) Output of GENIE-

derived classification algorithm applied to raw multispectral data shown in Fig. 1 (c); (e) Output of GENIE-derived
classification algorithm found during training, applied to raw multispectral data shown directly above in (b); (f)
Output of GENIE-derived classification algorithm found during training, applied to raw multispectral data shown
directly above in (c)

Column 2 shows the number of pixels labelled as cancer by the expert for each image. Column 3 shows the number
of pixels labelled as non-cancer (normal) for each image. Column 4 shows the detection rate (DR) for each image in
the testing data set. Column 5 shows the false-alarm rate (FAR) for each image in the testing data set. Column 6
shows the total number of pixels labelled as cancer by GENIE’s algorithm for the entire image, not just the region
labelled by the expert.

Table 2 shows the performance of the algorithm found by GENIE during training, as relates to some testing data
- i.e. some image data which was not seen during tyraining (out-of-training-sample data), but for which we don’t
have expert-provided ground truth. While we don’t have expert-provided ground-truth on a pixel-by-pixel basis for
these images, we do know, for each image, whether it contains some cancer or whether the image has only normal
tissue. Thus, for these images we only provide the total number of pixels labelled as cancer by GENIE’s algorithm
for the entire image.

6. DISCUSSION

It can be seen, both from the images shown in Fig. 2 and in Tables 1 - 3, that GENIE was able to evolve an
algorithm capable of doing a good job of discriminating cancer from non-cancer in the multispectral images used in
these experiments. For the training data, for the images that contained both cancerous and non-cancerous (normal)
tissue, GENIE was, on average, able to detect over 87% of all cancerous nuclei pixels and only incorrectly labelled less
than 7% of normal tissue as cancer. For images that contained only normal tissue, on average, GENIE incorrectly
labelled less than 1% of pixels as cancer. For testing data, for which an expert had provided ground-truth, for images
that contained a mixture of both cancerous and normal tissue, GENIE, on average, was able to correctly label more




Table 1. Performance of the GENIE-derived classification algorithm found during training applied to training-
sample data

# Labelled # Labelled Total # Pixels
Cancer Pixels | Non-Cancer Pixels Labelled as Cancer
Image Name | (Training) (Training) FAR (%) | in Result Image

C1-15 25230 147657 0.17 60742
C2-12 27422 134501 18.63 138568
C2-9 14871 34187 0.25 215508
Average 22508 105448 6.35 138273
N1-8 0 132880 0.21 4408
N2-9 204768 0.21 554
N1-1 243120 0.36 1305
N4-4 335616 2.31 18318
Average 229096 0.77 6146

Table 2. Performance of the GENIE-derived classification algorithm found during training applied to out-of-training-
sample data, for which an expert had provided labels, in order to determine out-of-sample performance

# Labelled # Labelled Total # Pixels
Cancer Pixels | Non-Cancer Pixels Labelled as Cancer
Image Name (Testing) (Testing) DR (%) | FAR (%) in Result

C1-2 12357 83286 48.04 7.85 94274
C2-14 7992 27960 93.23 29.61 300216
C4-9 3880 54773 96.89 18.76 205827
C5-8 4006 73325 90.84 6.99 139858
Average 7059 59836 82.25 15.80 185044
N1-2 0 1.198 x 10° 0.15 1746
N2-7 0 1.198 x 10° 0.66 7938
N3-9 0 1.198 x 10° 0.64 7708
0
0

N4-5 1.198 x 10° 0.14 1640
Average 1.198 x 10° 0.40 4758

than 82% of cancerous nuclei pixels and labelled less than 16% of normal tissue incorrectly as cancer. For images
that contained only normal tissue, on average, GENIE incorrectly labelled less than 0.5% of pixels as cancer.

It should be noted that the non-nuclei, connective tissue surrounding the cancerous nuclei in the cancer-containing
samples is, in fact, not normal tissue. It has its own deviation from normal. It is interesting to note that the
algorithm evolved by GENIE labelled this tissue as cancerous. This is hardly surprising. The training data provided
from the cancer-containing samples consisted of mostly pixels from cancerous nuclei, with very few samples from the
surrounding stroma. However, there were plenty of training samples taken from normal, healthy stroma. Thus, with
training samples provided for two classes: malignant nuclei and normal, healthy “everything else”, it is understandable
that malignant stroma would be significantly different from the training data samples provided for the normal healthy
tissue, and would thus be classified into the other “cancerous nuclei” class.

While there was a drop in GENIE’s performance, from training data to testing data, for images that contained
both cancerous and normal tissue, with the average detection rate going from 87% to 82% and average false-alarm
rate going from 7% to 16%, there was actually an improvement in performance, from training data to testing data,
for images that contained only normal tissue, with the average false-alarm rate going from 3% to 0.4%.

In general, the algorithm discovered by GENIE does a very good job of discriminating cancer versus normal
tissue, both for the data provided in training and for the out-of-training-sample data. There is a large difference
(orders of magnitude) between the numbers of pixels classified as being cancer in those images containing cancer




Table 3. Performance of the GENIE-derived classification algorithm found during training applied to out-of-training-
sample data, for which no labels had been provided

Total # Pixels
Labelled as Cancer
Image Name in Result
C2-5 92385
C2-7 272119
C3-2 169649
C3-4 196517
C5-10 183402
Average 182814
N2-2 292
N2-4 1509
N3-4 686
N3-6 5348
N4-9 4107
Average 2388

compared to those images containing only normal, healthy tissue.

6.1. Further work

GENIE, as it currently stands, despite the promising results shown here, needs much modification in order to be made
more generally useful for real applications in pathology. The present suite of operators that make up GENIE’s “gene
pool” are essentially those which were provided for remote-sensing applications. These operators are not necessarily
the most appropriate for the field of pathology. A more targeted group of operators developed from those already
developed for such applications in pathology and described in the literature'®!” would be a good start. In addition,
GENIE’s current mode of operation, in which the classification is performed on a pixel-by-pixel basis is not ideal.
Moving to a higher-level, more object-based classification methodology, would be a better approach. Going even
further, beyond providing a simple binary classification indicating the presence or absence of cancer and providing a
more detailed classification, such as cancer grade is an additional goal. The other area that needs work is to improve
the time taken for training. At present, depending on the amount of training data provided and the complexity of
the algorithm space GENIE is set the task of searching, it can take several hours to perform a training run. We aim
to be able to reduce this training time to minutes. Our approaches to achieving this goal include parallelisation of
the genetic algorithm,® implementation of image processing operators in hardware (via FPGAs'®) and investigation
of better, and more efficient search and classification methodologies.!?

Further work also needs to be undertaken towards a proper validation of the approach, using a far greater volume
of data than used in these experiments.

7. CONCLUSIONS

We have shown preliminary investigations into the application of a system originally developed for the automated
analysis of satellite image data to the problem of cancer detection from histopathology image data. The results of
this work shows great promise, but leaves many questions yet to be answered, and much work to be done.
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